在图像识别中已广泛提出了生成模型,以生成更多图像,其中分布与真实图像相似。它通常会引入一个歧视网络,以区分真实数据与生成的数据。这样的模型利用了一个歧视网络,该网络负责以区分样式从目标数据集中包含的数据传输的数据。但是,这样做的网络着重于强度分布的差异,并可能忽略数据集之间的结构差异。在本文中,我们制定了一个新的图像到图像翻译问题,以确保生成的图像的结构类似于目标数据集中的图像。我们提出了一个简单但功能强大的结构不稳定的对抗(SUA)网络,该网络在执行图像分割时介绍了训练和测试集之间的强度和结构差异。它由空间变换块组成,然后是强度分布渲染模块。提出了空间变换块来减少两个图像之间的结构缝隙,还产生了一个反变形字段,以使最终的分段图像背部扭曲。然后,强度分布渲染模块将变形结构呈现到具有目标强度分布的图像。实验结果表明,所提出的SUA方法具有在多个数据集之间传递强度分布和结构含量的能力。
translated by 谷歌翻译
结构化照明显微镜(SIM)是一种重要的基于超分辨率的显微镜技术,可打破衍射极限并增强光学显微镜系统。随着生物学和医学工程的发展,在极低光线和短曝光环境下对实时和强大的SIM成像进行了很高的需求。现有的SIM技术通常需要多个结构化照明帧以产生高分辨率图像。在本文中,我们提出了基于深度学习的单帧结构化照明显微镜(SF-SIM)。我们的SF-SIM只需要一个结构化照明框架的一次拍摄,并与通常需要15次射门的传统SIM系统相比产生类似的结果。在我们的SF-SIM中,我们提出了一种噪声估计器,可以有效地抑制图像中的噪声,并使我们的方法能够在低光线和短曝光环境下工作,而无需堆叠多个帧以用于非局部去噪。我们还设计了一个带通注意模块,使我们的深网络对频率变化更敏感,并提高了成像质量。我们所提出的SF-SIM比在实现类似结果时比传统的SIM方法快14倍。因此,我们的方法对于微生物学和医学的发展是显着的价值。
translated by 谷歌翻译
在基因组生物学研究中,调节基因组建模是许多监管下游任务的重要课题,例如推动者分类,交易因子结合位点预测。核心问题是模拟监管元素如何相互交互及其跨不同小区类型的可变性。然而,目前的深度学习方法通​​常专注于建模固定的细胞类型集的基因组序列,并且不考虑多个调节元件之间的相互作用,使它们仅在训练集中的小区类型上表现良好,并且缺乏所需的概括生物学应用。在这项工作中,我们提出了一种简单但有效的方法,用于以多模态和自我监督的方式预先培训基因组数据,我们称之为Genebert。具体而言,我们同时服用1D基因组数据和2D矩阵(转录因子X区)作为输入,其中提出了三项预训练任务,以提高模型的鲁棒性和概括性。我们在ATAC-SEQ数据集上预先培训我们的模型,具有1700万基因组序列。我们在不同细胞类型中评估我们的Genebert关于监管下游任务,包括启动子分类,交易因子结合位点预测,疾病风险估计和剪接部位预测。广泛的实验证明了大型监管基因组学数据的多模态和自我监督的预培训的有效性。
translated by 谷歌翻译
Inference time, model size, and accuracy are three key factors in deep model compression. Most of the existing work addresses these three key factors separately as it is difficult to optimize them all at the same time. For example, low-bit quantization aims at obtaining a faster model; weight sharing quantization aims at improving compression ratio and accuracy; and mixed-precision quantization aims at balancing accuracy and inference time. To simultaneously optimize bit-width, model size, and accuracy, we propose pruning ternary quantization (PTQ): a simple, effective, symmetric ternary quantization method. We integrate L2 normalization, pruning, and the weight decay term to reduce the weight discrepancy in the gradient estimator during quantization, thus producing highly compressed ternary weights. Our method brings the highest test accuracy and the highest compression ratio. For example, it produces a 939kb (49$\times$) 2bit ternary ResNet-18 model with only 4\% accuracy drop on the ImageNet dataset. It compresses 170MB Mask R-CNN to 5MB (34$\times$) with only 2.8\% average precision drop. Our method is verified on image classification, object detection/segmentation tasks with different network structures such as ResNet-18, ResNet-50, and MobileNetV2.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
A noisy training set usually leads to the degradation of the generalization and robustness of neural networks. In this paper, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels. Specifically, we first present a Scalable Penalized Regression (SPR) method, to model the linear relation between network features and one-hot labels. In SPR, the clean data are identified by the zero mean-shift parameters solved in the regression model. We theoretically show that SPR can recover clean data under some conditions. Under general scenarios, the conditions may be no longer satisfied; and some noisy data are falsely selected as clean data. To solve this problem, we propose a data-adaptive method for Scalable Penalized Regression with Knockoff filters (Knockoffs-SPR), which is provable to control the False-Selection-Rate (FSR) in the selected clean data. To improve the efficiency, we further present a split algorithm that divides the whole training set into small pieces that can be solved in parallel to make the framework scalable to large datasets. While Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline, we further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data. Experimental results on several benchmark datasets and real-world noisy datasets show the effectiveness of our framework and validate the theoretical results of Knockoffs-SPR. Our code and pre-trained models will be released.
translated by 谷歌翻译
As natural language processing (NLP) for gender bias becomes a significant interdisciplinary topic, the prevalent data-driven techniques such as large-scale language models suffer from data inadequacy and biased corpus, especially for languages with insufficient resources such as Chinese. To this end, we propose a Chinese cOrpus foR Gender bIas Probing and Mitigation CORGI-PM, which contains 32.9k sentences with high-quality labels derived by following an annotation scheme specifically developed for gender bias in the Chinese context. Moreover, we address three challenges for automatic textual gender bias mitigation, which requires the models to detect, classify, and mitigate textual gender bias. We also conduct experiments with state-of-the-art language models to provide baselines. To our best knowledge, CORGI-PM is the first sentence-level Chinese corpus for gender bias probing and mitigation.
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
Most Graph Neural Networks follow the message-passing paradigm, assuming the observed structure depicts the ground-truth node relationships. However, this fundamental assumption cannot always be satisfied, as real-world graphs are always incomplete, noisy, or redundant. How to reveal the inherent graph structure in a unified way remains under-explored. We proposed PRI-GSL, a Graph Structure Learning framework guided by the Principle of Relevant Information, providing a simple and unified framework for identifying the self-organization and revealing the hidden structure. PRI-GSL learns a structure that contains the most relevant yet least redundant information quantified by von Neumann entropy and Quantum Jensen-Shannon divergence. PRI-GSL incorporates the evolution of quantum continuous walk with graph wavelets to encode node structural roles, showing in which way the nodes interplay and self-organize with the graph structure. Extensive experiments demonstrate the superior effectiveness and robustness of PRI-GSL.
translated by 谷歌翻译
State space models (SSMs) have demonstrated state-of-the-art sequence modeling performance in some modalities, but underperform attention in language modeling. Moreover, despite scaling nearly linearly in sequence length instead of quadratically, SSMs are still slower than Transformers due to poor hardware utilization. In this paper, we make progress on understanding the expressivity gap between SSMs and attention in language modeling, and on reducing the hardware barrier between SSMs and attention. First, we use synthetic language modeling tasks to understand the gap between SSMs and attention. We find that existing SSMs struggle with two capabilities: recalling earlier tokens in the sequence and comparing tokens across the sequence. To understand the impact on language modeling, we propose a new SSM layer, H3, that is explicitly designed for these abilities. H3 matches attention on the synthetic languages and comes within 0.4 PPL of Transformers on OpenWebText. Furthermore, a hybrid 125M-parameter H3-attention model that retains two attention layers surprisingly outperforms Transformers on OpenWebText by 1.0 PPL. Next, to improve the efficiency of training SSMs on modern hardware, we propose FlashConv. FlashConv uses a fused block FFT algorithm to improve efficiency on sequences up to 8K, and introduces a novel state passing algorithm that exploits the recurrent properties of SSMs to scale to longer sequences. FlashConv yields 2$\times$ speedup on the long-range arena benchmark and allows hybrid language models to generate text 1.6$\times$ faster than Transformers. Using FlashConv, we scale hybrid H3-attention language models up to 1.3B parameters on the Pile and find promising initial results, achieving lower perplexity than Transformers and outperforming Transformers in zero- and few-shot learning on a majority of tasks in the SuperGLUE benchmark.
translated by 谷歌翻译